セミナー(2016.4.4):Raymond Bishop氏 (Univ. Manchester)

2016年4月4日(月)に、マンチェスター大学のRaymond Bishop氏による結合クラスター法(Coupled Cluster Method)に関するセミナーを予定しています。本セミナーは、計算科学研究センターの計算科学コロキウムとして開催されます。以下と同様の内容ですが、計算科学研究センターのHPは、こちらをご覧ください。

Date/Time: April 4th (Mon), 15:00-

Place: Meeting Room A (1F), Center for Computational Sciences

Lecturer: Raymond Bishop (University of Manchester, UK)

Title: Highly Frustrated Spin-Lattice Models of Magnetism and Their Quantum Phase Transitions: A Microscopic Treatment via the Coupled Cluster Method

Abstract: The coupled cluster method1) (CCM) is one of the most pervasive, most powerful, and most successful of all ab initio formulations of quantum many-body theory. It has probably been applied to more systems in quantum field theory, quantum chemistry, nuclear, subnuclear, condensed matter and other areas of physics than any other competing method. The CCM has yielded numerical results which are among the most accurate available for an incredibly wide range of both finite and extended physical systems defined on a spatial continuum. These range from atoms and molecules of interest in quantum chemistry, where the method has long been the recognized “gold standard”, to atomic nuclei; from the electron gas to dense nuclear and baryonic matter; and from models in quantum optics, quantum electronics, and solid-state optoelectronics to field theories of strongly interacting nucleons and pions.

This widespread success for both finite and extended physical systems defined on a spatial continuum2) has led to recent applications to corresponding quantum-mechanical systems defined on an extended regular spatial lattice. Such lattice systems are nowadays the subject of intense theoretical study. They include many examples of systems characterised by novel ground states which display quantum order in some region of the Hamiltonian parameter space, delimited by critical values which mark the corresponding quantum phase transitions. The quantum critical phenomena often differ profoundly from their classical counterparts, and the subtle correlations present usually cannot easily be treated by standard many-body techniques (e.g., perturbation theory or mean-field approximations). A key challenge for modern quantum many-body theory has been to develop microscopic techniques capable of handling both these novel and more traditional systems. Our recent work shows that the CCM is capable of bridging this divide. We have shown how the systematic inclusion of multispin correlations for a wide variety of quantum spin-lattice problems can be efficiently implemented with the CCM3). The method is not restricted to bipartite lattices or to non-frustrated systems, and can thus deal with problems where most alternative techniques, e.g., exact diagonalisation of small lattices or quantum Monte Carlo (QMC) simulations, are faced with specific difficulties.

In this talk I describe our recent work that has applied the CCM to strongly interacting and highly frustrated spin-lattice models of interest in quantum magnetism, especially in two spatial dimensions. I show how the CCM may readily be implemented to high orders in systematically improvable hierarchies of approximations, e.g., in a localised lattice-animal-based subsystem (LSUBm) scheme, by the use of computer-algebraic techniques. Values for ground-state (and excited-state) properties are obtained which are fully competitive with those from other state-of-the-art methods, including the much more computationally intensive QMC techniques in the relatively rare (unfrustrated) cases where the latter can be readily applied. I describe the method itself, and illustrate its ability to give accurate descriptions of the ground-state phase diagrams of a wide variety of frustrated magnetic systems via a number of topical examples of its high-order implementations, from among a very large corpus of results for spin lattices. The raw LSUBm results are themselves generally excellent. I show explicitly both how they converge rapidly and can also be accurately extrapolated in the truncation index, m → ∞, to the exact limit.
_____________________________________________________________

1) R.F. Bishop, in Microscopic Quantum Many-Body Theories and Their Applications, (eds. J. Navarro and A. Polls), Lecture Notes in Physics Vol. 510, Springer-Verlag, Berlin (1998), 1.
2) R.F. Bishop, Theor. Chim. Acta 80 (1991), 95; R.J. Bartlett, J. Phys. Chem. 93 (1989), 1697.
3) D.J.J. Farnell and R.F. Bishop, in Quantum Magnetism, (eds. U. Schollwöck, J. Richter, D.J.J. Farnell and R.F. Bishop), Lecture Notes in Physics Vol. 645, Springer-Verlag, Berlin (2004), 307.

博士学位論文公聴会(2016.2.17):佐藤駿丞氏

当研究室の大学院生である佐藤駿丞さんの博士学位論文審査・公聴会が以下のように開催予定です。

日時:2016年2月17日(水)、16:00より
場所:計算科学研究センター1F 会議室A
学位論文題目:Time-dependent density functional theory for extremely nonlinear interactions of light with dielectrics

セミナー(2016.2.5):Cedric Simenel氏 (ANU)

2016年2月5日(金)に、オーストラリア国立大学のCedric Simenel氏のセミナーを以下の通り行います。また、Simenel氏は2/3-10の間、筑波大学の原子核理論研究室に滞在予定です。

Date/Time: February 5th (Fri), 13:45-

Place: D312, Institute for Natural Sciences (自然学系D棟)

Lecturer: Cedric Simenel (Australian National University, Canberra, Australia)

Title: Counting particles in microscopic systems

Abstract: Simple observables such as the number of particles might be difficult to descrybe when a quantum composite system encounters a violent perturbation, for instance in collisions of atomic nuclei. It requires a predictive many-body theory to describe the time evolution of the system accounting for indiscernibility of identical particles. Our goal is rather simple: predicting the probability for a number of transferred particles in such a collision. To keep the amount of work for the physicist and his/her computer to a reasonable level, approximations are considered rather than solving the full Schrödinger equation. The Balian-Veneroni variational principle provides a useful theoretical framework to build dynamical microscopic models. To solve this variational principle, one has to choose one particular type of observable of interest. For expectation values of one-body operators, like the average number of transferred particles, this leads to the time-dependent Hartree-Fock (TDHF) theory. For their fluctuations, the Balian-Vénéroni variational principle leads to an equation equivalent to the time-dependent Random Phase Approximation. Examples of applications will be taken within the nuclear physics context.

不安定核セミナー開催(2016.1.21)

第35回つくば不安定核セミナーを東京理科大・野田キャンパスで開催します。また、セミナーに先立ち、10:00-12:00, 13:10-15:10には学部生・修士以上を対象とした講義を行います。

講師: 藤田 佳孝
所属:大阪大学 核物理研究センター/理学研究科物理学専攻
日時: 2016年1月21日(木)16:00‒17:30 場所:東京理科大学 野田キャンパス 4号館4階 演習室1(44S11)
題目:ガモフ・テラー遷移の研究から見える原子核物理
(Nuclear Physics Revealed by the Study of Gamow-Teller Transitions)

詳細

セミナー(2015.12.18):Das Pemmaraju氏 (LBNL)

Dec.18, 2015, 13:45 at D312 (自然学系D棟)

Speaker: Das Pemmaraju (The Molecular Foundry and Chemical Sciences

Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA)

Title: First-principles interpretation of attosecond time-resolved XUV absorption spectroscopy of laser excited Silicon

Abstract: The availability of ultrafast x-ray pulses both from powerfulfree electron laser light-sources as well as table top high-harmonicgeneration, has significantly enhanced the utility of core-levelspectroscopies as probes for investigating dynamical processes infunctional materials. Theoretical approaches to complement these time-domain experiments are therefore actively being developed. In this context, I will discuss recent efforts that employ a combination of real-time time-dependent density functional theory (TDDFT), occupancy-constrained density functional theory and many-body perturbation theory approaches to help interpret spectral signatures in attosecond time-resolved core-level spectroscopic measurements on laser-excited silicon. Out-of-equilibrium electron-hole densities obtained from real-time TDDFT simulations of the valence electron dynamics are used to estimate the transient modulation of L-edge absorption in femtosecond infrared pump – attosecond XUV probe experiments. Furthermore, the contribution of electron-phonon and electron-electron scattering mechanisms to the lifetime broadening observed in measured L-edge spectra is estimated using occupation-constrained density functional theory and GW calculations respectively.

ポスドク研究員公募(締切:2016年1月22日)

筑波大学計算科学研究センター研究員公募

1. 募集人員:研究員 1名
2. 専門分野: 原子核物理学(理論)
3. 勤務地・所属:
   茨城県つくば市天王台1-1-1
   筑波大学計算科学研究センター原子核物理研究部門
4. 職務内容:
   計算核物理学に関する研究。特に、部門メンバーと協力しながら、筑波大計算科学研究センターと東大情報基盤センターが共同運営する最先端共同HPC基盤施設(JCAHPC)における次期スーパーコンピュータシステムにおけるアプリ開発に従事して頂ける方が望ましい。
5. (1) 着任時期:平成28年4月1日以降のできるだけ早い時期
    (2) 任期:着任後3年
    (3) 年俸制(本学規定による)(年俸額は, 経歴等を考慮し決定)
6. 応募資格:
 博士の学位を有する方又は平成28年3月に博士の学位取得見込みの方。
7. 提出書類:
 (1)履歴書(写真貼付)
 (2)業績リスト(論文は査読付きとその他を区別)
 (3)主な論文別刷(3編以内)
 (4)これまでの研究の概要
 (5)研究計画と今後の抱負
 (6)本人についての意見を求め得る方2名の氏名及び連絡先
8. 応募締切: 平成28年1月22日(金) 必着
9. (1) 提出先
        〒305-8577 つくば市天王台 1-1-1
  筑波大学計算科学研究センター
  中務 孝
   (2) 問い合わせ先
  筑波大学計算科学研究センター 原子核物理研究部門主任
  中務 孝(TEL: 029-853-4282, e-mail: apply [at] nucl.ph.tsukuba.ac.jp)
10. 応募上の注意:
   封筒に「センター研究員(原子核物理学)応募書類在中」と朱書きし、簡易書留か宅配便にてお送りください。
11. その他
    筑波大学では男女雇用機会均等法を遵守した人事選考を行っています。

Theoretical Nuclear Physics Division in Center for Computational Sciences, University of Tsukuba anticipates an opening for a postdoctoral researcher in nuclear theory beginning in April of 2016. Current research efforts by Profs. Nakatsukasa, Yabana, Hashimoto, and Hinohara include works on applications of density functional theory, theories of large amplitude collective motion, and cluster/few-body models, to problems of nuclear structure and reaction. Applicants abroad should send the application materials, both by postal mail and by email with attached PDF files.

1. Position Title: Postdoctoral Researcher
2. Subject Area: Theoretical Nuclear Physics
3. Position Location: Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
4. Job description: Research in computational nuclear physics
5. (1) Start of employment: April 1, 2016 or later (negotiable)
    (2) Period of employment: Three years
    (3) Conditions: Full-time employment. Salary will be commensurate with qualifications and experience.
6. Qualifications: Candidates must hold a doctoral degree in a related field, or receive it before start of employment
7. Application Materials Required:
 (1) Curriculum Vitae
 (2) Publication List
 (3) Copy of three major publications
 (4) Research statement
 (5) Research plan
 (6) Names and contact information of two reference persons
8. Application Deadline: Jan. 22, 2016
9. (1) Application materials should be sent to
          Prof. T. Nakatsukasa
          Center for Computational Sciences, University of Tsukuba
          1-1-1 Tennodai, Tsukuba 305-8577, Japan
    NB: Please write in red ink “CCS Postdoctoral Research Fellow (Nuclear Physics)” on the front side of envelope.
   (2) Contact
       Takashi Nakatsukasa
       Division chief of Theoretical Nuclear Physics
       TEL: +81 29-853-4282
       Email: apply [at] nucl.ph.tsukuba.ac.jp
10. Note: The University of Tsukuba is an equal opportunity employer.

第10回日本物理学会若手奨励賞(関澤さん)

本研究室出身(現ワルシャワ工科大)の関澤一之氏が、第10回日本物理学会若手奨励賞を受賞することが決まりました。

 

セミナー(2015.10.16):George F Bertsch氏 (INT)

2015年10月16日(金)13:00より、ワシントン大学 Institute for Nuclear Theory のGeorge Bertsch氏によるセミナーを予定しています。

Lecturer: Prof George F Bertsch (INT, Univ. of Washington)
Title: A new approach to fission theory
Place: D312
Date/Time: October 16, 2015 / 13:00

集中講義 (2015.12.28-29):飯田圭氏(高知大)

2日間の集中講義を以下の日程で行います。

題目:「中性子星の物理」

講師:飯田 圭氏(高知大学 教授)

日程:

12月 28日(月)10:30~12:00, 14:00~15:30, 16:00~17:30

12月 29日(火)10:30~12:00, 14:00~15:30, 16:00~17:30

場 所:筑波大学自然学系棟D312

内容:中性子星は超新星爆発のあとに残るコンパクトな天体の一形態である。中性子星で見られる多彩な現象から、地上では作り得ない高密度物質の性質をさぐる。講義内容は主に、以下の通り。

1.中性子星の魅力とパルサーの魔力

2.中性子星物質の多彩な物性

3.中性子星の進化と高密度物質

4.パルサーグリッチ現象と中性子渦糸のピン止め

5.中性子星クラストとパスタ原子核

講義資料(制限あり)PPT1, PPT2, PPT3, PPT4, PPT5

セミナー(2015.9.15):渡辺元太郎氏 (IBS)

9月13-15日の日程で、Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS)[韓国]から渡辺元太郎氏の訪問があり、筑波大の当研究室に滞在します。また、以下のセミナーを開催する予定です。

Date: September 15th (Tue) 11:00-
Place: Meeting Room A, Center for Computational Sciences (1F)
Lecturer: Dr Gentaro Watanabe (IBS, Korea)
Title: Quantum fluctuation theorems and generalized measurements: towards their verification using cold atomic gases
Abstract: We discuss transient fluctuation theorems in quantum systems, i.e., quantum Jarzynski equality and Tasaki-Crooks relation. In these quantum fluctuation theorems, work is defined by the projective energy measurements at the beginning and the end of the force protocol. However, projective measurements are difficult to implement experimentally. This is a major obstacle to the direct verification of the transient fluctuation theorems in quantum systems. It is thus important to ask whether these projective measurements can be replaced with generalized measurements which could be easier to implement [1-3]. First, we prove a kind of no-go theorem that only projective measurements can satisfy the Crooks relation for an arbitrary force protocol [1]. Then we show that, however, we can overcome this no-go theorem [3]. We will also discuss the future prospects towards the verification of the quantum fluctuation theorems using cold atomic gases.
[1] B. P. Venkatesh, G. Watanabe, and P. Talkner, New J. Phys. 16, 015032(2014).
[2] G. Watanabe, B. P. Venkatesh, P. Talkner, M. Campisi, and P. Haenggi, Phys. Rev. E 89, 032114 (2014).
[3] G. Watanabe, B. P. Venkatesh, and P. Talkner, Phys. Rev. E 89, 052116 (2014).
* The seminar is given in English.